2023 Microscale Innovation in Life Sciences Symposium

Seminal scientific discoveries started with, and were initially identified in, laboratories using large-scale petri dishes and high volumes of reagents. These experiments consumed more sample and time than compared to current day processes. To conserve and speed up the process, scientists are now ‘scaling-down’ the science into smaller units without jeopardizing the quality or the results. This can take the form of multi-well sample plates that contain upwards of 3,456 microwells per plate, utilizing the recent advances in microfluidics, or by harnessing the complexity of testing on animals by replacing them with much smaller surrogate organ-on-a-chip type systems. The inaugural SLAS 2023 Microscale Innovation in Life Sciences Symposium will provide attendees with a forum to communicate these scaled-down approaches and demonstrate their effectiveness through examples in podium talks, poster presentations and a technology provider exhibition. 


Search by Category
Search by Format
Sort By
  • Contains 2 Component(s)

    Poster Presentations from the 2023 Microscale Innovation in Life Sciences Symposium

    Poster Presentations from the 2023 Microscale Innovation in Life Science Symposium

  • Contains 1 Component(s)

    Presentation from the Microfluidics session

    The next generation of single cell analysis will involve the measurement of functional properties of living cells, including growth, death, protein secretions, and the interactions between multiple cell types. Similar to transcriptomic measurements, there is a need for measuring high dimensional functional properties of single cells so that the relevant subpopulations can be identified and retrieved for follow-on applications, including cell line development and immune marker discovery. However, existing platforms to date have either hand insufficient scale, low dimensionality and/or are too high cost to be practically implemented for routine biology experiments. In this talk, I will summarize our recent advances in using high dimensional time lapse imaging to measure the functional heterogeneity of living cells at the scale of 100,000 single clones per experiment. I will provide several examples of the applications of our platform in the ability to find rare drug-resistant cells, existing at frequencies of less than 1 in 10,000 in the parental population, as well as in measuring the potency of immune cells that are both effective at secreting cytokines and also in killing cancer cells in a target dependent manner. Ultimately, this platform can be used in the development of better drugs that more effectively suppress resistance, as well as better cell-based therapies that have greater clinical effectiveness.

    Ben Yellen



    Dr. Benjamin Yellen received his B.S. in Chemistry from Emory University, his Ph.D in Electrical & Computer Engineering from Drexel University, and served as a tenured faculty member in the Duke University Mechanical Engineering and Materials Science Department from 2005 to 2022, where his research interests were focused at the intersection of electricity and magnetism, colloids and soft matter, computer vision, and high throughput instrumentation. Ben published dozens of papers in prestigious journals including Nature, PNAS, Science Advances, and others. After founding Celldom in 2016, Ben joined Celldom full time first as the CTO in 2020, and later as the CEO in 2021. At Celldom, Ben has continued his scholarly interests in applying deep learning and AI models to cell biology, and in developing high impact cell biology tools that can measure function, phenotype, and molecular properties of single cells at scale.

  • Contains 1 Component(s)

    Presentation from the Next Generation Miniaturization Technologies session

    Presentation from the Next Generation Miniaturization Technologies session

    Anastasia Velentza

    Senior Director


    Anastasia Velentza, Ph.D., Senior Director, Plexium Anastasia Velentza is the Head of Discovery Technology at Plexium, a TPD company. Anastasia has 23 years in Drug Discovery, with expertise in Screening and Discovery Biology across multiple therapeutic areas, modalities and targets. Before Plexium, she held positions of increasing responsibility at Novartis, Dart Neuroscience and Ferring Pharmaceuticals. Anastasia was NIH Research Award scholar in a drug discovery training program at Northwestern University in Chicago, IL. She earned her Bachelor of Science in Chemistry at the University of Patras in Greece, and a Ph.D. from the same institution in Bioorganic Chemistry, funded by a competitive scholarship and EU programs.

  • Contains 1 Component(s)

    Presentation from the Advances in Organ-on-Chip Platforms session

    The investigation of radiation’s effects on the GI tract, the identification of dosimetry biomarkers, and the testing of new radiation countermeasure drugs are all limited in humans due to the restricted access to human samples or the use of animal models that are not representative of human physiology. Thus, there is a need for improved in vitro models to elucidate the effects of x-ray radiation on the human GI system that mimic the in vivo physiological environment and interaction between human GI epithelium and gut microbiome. Here, we developed a Gut-on-Chip system (HuMiX) to reproduce multiple in vivo parameters classically associated with human GI following acute irradiation. The HuMiX device is a co-culture system consisting of three chambers separated by two porous polycarbonate membranes, delimiting the microbial, intestinal, and vascular compartments. Previous design iterations of HuMiX have demonstrated that the system can imitate the in vivo immunologic, metabolic, and transcriptional responses to commensal gut bacteria [Shah et al, 2016]. In the newly designed system, ~16,000 Caco-2 cells/mm2 were seeded on a collagen-treated membrane in the middle chamber and incubated under normal cell culture incubator conditions. The middle and bottom chambers were then flowed with Caco-2 cell medium at 67 ul/min for 6 days, when 8 x 107/mL of mixed bacterial flora, isolated from human stool samples from 6 different donors, were injected into the top chamber. Post 12 hours co-culture, the devices were sham- or 8 Gy-irradiated at 1 Gy/min using 320 keV x-ray beam with 2 mm Al filter. Twenty-four hours after irradiation, the supernatant was collected for inflammatory cytokine detection, the bacterial cells were collected from the top chamber for microbiome profiling and Caco2 cells were stained. Preliminary microbiome profiling identified the presence of three phyla: Bacteroides, FAFV (Firmicutes, Actinobacteria, Fusobacteria, and Verrucomicrobia), and Proteobacteria. DNA concentration, species richness, and species diversity obtained from the devices decreased as compared to those profiles isolated from direct fecal bacteria isolation and/or cultured in bacterial culture broths, but still maintained highly diverse profiles. Current analyses are on-going to identify if radiation modified the Firmicutes/Bacteriodetes ratio as shown by in vivo studies. The Caco2 phenotype revealed the formation of villi, the presence of cell-cell tight junctions and the production of mucus, demonstrating the establishment of physiological intestinal hallmarks. Irradiation showed ability to disrupt cell junctions and to permeabilize the intestinal barrier as suggested by dextran assay. Citrulline, an amino acid whose plasma level decrease following intestinal radiation-induced damage, was also quantified. This study is an ongoing project and the injection of immune cells will be performed in the future to assess if the HuMiX can recapitulate the expression change of well-known radiation dosimetry biomarkers in blood. Overall, our data suggest that the HuMiX offers a promising tool to study radiation effect on human gut and test radiation countermeasure approaches.

    Nicole Sherwood

    PhD Student

    University of Arizona College of Medicine Phoenix

    Nicole Sherwood, B.S is a second year Ph.D. student in the Clinical Translational Sciences program at the University of Arizona College of Medicine Phoenix. She is a graduate research assistant in the Center for Applied NanoBioMedicine under the mentorship of Dr. Jerome Lacome and Dr. Frederic Zenhausern. Nicole graduated from Arizona State University in May 2022 with a B.S. in cell biology and completed an undergraduate thesis project on the signal transduction differences between melanoma subtypes.

  • Contains 1 Component(s)

    Presentation from the Microscale Innovation for Translational Applications session

    AmplifiDx is developing a high-performance, low-cost microfluidic cartridge-based point-of-care testing system. The speaker will describe how the company has distinguished itself in an extremely crowded space, and how it continues to defy the odds even in this challenging economy for start-ups. This involves differentiated technology, but more importantly, creative partnerships and an understanding of the market.

    Nancy Schoenbrunner


    AmplifiDx, Inc.

    Nancy Schoenbrunner, CEO of AmplifiDx, has a proven track record as an executive in the medical device and diagnostic field (Roche Diagnostics for 20 years; Scipher Medicine for 2 years). Nancy is adept at planning and directing the organization’s technology commercialization and innovation strategy, R&D and IP portfolio. She has experience in creating value by managing cross-functional global teams, managing external development partners, forming strategic alliances, and driving product innovation. She has a Ph.D. in Biophysics and is inventor on 31 issued and pending patent families. She has executed multiple successful commercialization projects from concept to market resulting in multiple first in class diagnostic product approvals including: • the cobas® EGFR cancer test (liquid biopsy), highlighted for innovation in the Roche annual reports in 2015 and 2016 • the cobas® 6800/8800 system, a top selling platform for Roche’s lab testing business (642M CHF revenue in 2017) • the cobas® Liat® point of care system, a major contributor to revenue growth for Roche in 2018 (>1500 system placements, 262% annual revenue growth). • Managing a team of data scientists to develop a predictive algorithm for treatment response in complex diseases, resulting in a clinically validated diagnostic product (PrismRA®) and numerous publications

  • Contains 1 Component(s)

    Closing Keynote presentation

    When it comes to diagnostic devices, what is better? An implantable device? A wearable device? Or a point-of-care device, that takes a sample from you and measures in-vitro? They all have pros and cons, but the underlying answer is innovations of technology available for that particular diagnostic. In this talk, I will present my work starting companies from in-vitro to implantable -- from breast pumps , to a device that measures fetal-maternal hemorrhaging, to point-of-care virus detection, and finally on my newest endeavor, engineering a painless, minimally invasive, small form-factor continuous wearable glucose monitor for my daughter who was recently diagnosed with Type I diabetes. We are developing this platform to sense multiple analytes in a real-time, continuous manner, thus changing the paradigm for on-body biosensing and continuous biomonitoring for medicine.

    Sumita Pennathur

    Professor of Mechanical Engineering


    Dr. Pennathur is a full Professor of Mechanical Engineering at the University of California Santa Barbara, with degrees from Stanford (PhD) and MIT (MS, BS).Since arriving at UCSB, Pennathur has contributed significantly to the fields of nanofluidics and interfacial science. She has performed pioneering work in both theoretical and experimental characterization of fluid flow in MEMS and NEMS devices. These contributions have been disseminated in the form of over 60 archived journal publications, books or conference papers, 6 patent applications, and more than 80 invited presentations. Notable awards include the DARPA Young Faculty Award (2008), the UC Regents Junior Faculty Fellowship (2009), the PECASE (Presidential Early Career Award in Science and Engineering) award (2010), the Santa Barbara Chamber of Commerce Innovator of the Quarter Award (2012), and the ADA Pathway to Stop Diabetes Visionary Award (2017), and elected as a member of the American Institute for Medical and Biological Engineering (AIMBE). Her work has led her to found many companies - Asta Fluidics, Alveo Technologies and more recently Laxmi Therapeutic Devices where she is currently CEO.

  • Contains 1 Component(s)

    Presentation from the Next Generation Miniaturization Technologies

    Encoded library technologies typically involve affinity selection to identify hits, which identifies binding but not necessarily function. Transfer of encoded libraries to solid-phase enables activity-based hit generation using high-throughput screening assays. This has been accomplished for DNA-encoded libraries, but not other encoded library formats. This lecture will discuss the first steps toward enabling activity-based mRNA display library screening. DNA-functionalized magnetic microspheres are used to template via bulk emulsification the formation of uniform hydrogel particles. The DNA templates are transcribed and the product mRNA is captured locally in the gel via hybridization. The captured mRNA is then translated and puromycin capture results in polyvalent, monoclonal display of the translated peptide (100 nM peptide in gel by HiBiT quantitation). The beads are analyzed by FACS and enrichments of > 50-fold were observed in a model screen. The ultra-miniaturized gel particle library format scalably transfers output from selection to focused libraries for functional screening.

    Brian M. Paegel


    UC Irvine

    Brian M. Paegel (rhymes with “bagel”) earned his undergraduate degree in chemistry from Duke University and his doctoral degree in chemistry from UC Berkeley working on miniaturized and integrated DNA sequencing technology development in collaboration with the Human Genome Project. He pursued postdoctoral studies in chemical biology and molecular evolution at Scripps Research. There, he studied the continuous evolution of catalytic RNAs, developing microfluidics for automation, reaction monitoring, and droplet compartmentalization. He was the recipient of both a NIH National Research Service Award (F32) and a Pathway to Independence Award (K99/R00). In 2008, Paegel was appointed to the Scripps chemistry faculty, starting his independent career at the new east coast campus of Scripps Research in Jupiter, Florida. He received the NIH Director’s New Innovator award and an NSF CAREER award in recognition of his contributions in reaction miniaturization for enzyme evolution, and Scripps granted him tenure in 2017 for his work in the field of DNA-encoded libraries and drug discovery technology development. In 2019, Paegel rejoined the University of California System where he is Professor in the Departments of Pharmaceutical Sciences, Chemistry, and Biomedical Engineering at Irvine. His laboratory aims to deliver advanced parallel synthesis and screening platforms to support cross-disciplinary translational research initiatives. Paegel is deploying these platforms to eliminate the canonical sense of what is “druggable” within the cellular milieu and to democratize the discovery of new medicines. To this end, he has co-founded four start-up companies in the biotechnology and drug discovery space.

  • Contains 1 Component(s)

    Presentation from the Next Generation Miniaturization Technologies session

    Entropic Biosciences, Inc. has designed a proprietary scaffold-free technology to grow high-throughput, automated, self-standing 3D cellular aggregates. We have used this platform technology to generate spheroids from various cancer cell types. This enables precision medicine and testing potential chemotherapeutics against 3D models derived from individual patients’ cancer and other verticles, including cellular agriculture and tissue engineering applications.

    Amir Nasajpour

    Chief Executive Officer and President

    Entropic Biosciences, Inc

    Amir Nasajpour is the Chief Executive Officer and President of Entropic Biosciences, Inc., based in Los Angeles, California. He is an Editorial Referee for the American Institute of Physics - Journal of Applied Physics. During his Ph.D., Amir created chemically defined biomaterials that orchestrate 3D cellular organization at unprecedented rates at UCLA under the direction of Professor Paul S Weiss. His previous research in self-assembly and bio-inspired design has been featured in over a dozen peer-reviewed publications, with media highlighting his research.

  • Contains 1 Component(s)

    Presentation from the Microfluidics session

    Microfluidic technologies were always at the forefront of innovations in liquid biopsies. There were several cornerstone microfluidic technologies that enabled sensitive and yet specific identification of blood-based biomarkers. The confluence of technology advancement and rapid developments in molecular characterization techniques pushed the boundaries of liquid biopsies thus enhancing the clinical utility of blood biopsies. Several such key enabling technologies will be presented. How isolation of circulating tumor cells and tumor derived vesicles using novel microfluidic technologies can enable precision diagnostics will be demonstrated with the example clinical case studies.

    Sunitha Nagrath

    Professor of Chemical Engineering and Biomedical Enginering

    University of Michigan

  • Contains 1 Component(s)

    Presentation from the Advances in Organ-on-Chip Platforms

    “Context of Use”. A little-known phrase but one that has profound implications. This phrase underscores the importance of considering the practical and real-world aspects of how something will be used or applied. This understanding helps guide decision-making, assessment, and optimization to ensure that products and processes are safe, effective, and fit for their intended purpose. Understanding the context of use has profound implications across the drug discovery continuum that focusses on developing the right in vitro model to answer a specific biological question while maintaining the desired balance between physiological relevance and throughput. The InSphero 3D Insight (TM) platform delivers robust, reproducible, scalable and actionable data across different disease pathologies to provide solutions for specific contexts of use.

    Madhu Nag

    Chief Scientific Officer

    InSphero AG

    Madhu Lal-Nag earned her Doctor of Philosophy (PhD) in Molecular and Cellular Oncology from The George Washington University and her Master’s in Bioscience Business from The Keck Graduate Institute of Applied Biosciences, Claremont, CA. Her main passion lies in being able to bridge the gap between the academic and the translational aspects of cutting-edge science in oncology, metabolic diseases and investigative toxicology, and in using the results of current therapeutic regimens to creatively translate cutting edge research to immediately serve patient need. Her research interests lie in the development of predictive alternative models for safety and efficacy in drug development and evaluation. This is evidenced by her work at the National Center for Advancing Translational Sciences (NCATS/NIH) as the Director of the Trans NIH RNAi Facility as well as at the USFDA as Program Director where she focused on the development of single and multi-cellular tumor spheroids for high throughput small molecule and functional genomics screening and the characterization and validation of these systems for regulatory adoption. She currently serves as the Chief Scientific Officer at InSphero where she joins incredibly an talented team that continues to innovate the drug discovery process by leveraging the best of biology and technology to develop more predictive and precise in vitro models.